Skip to main content

Importing and Querying JSON Array Objects in ClickHouse

· 6 min read

Question: How do I import JSON arrays and how can I query the inner objects?

Answer:

Dump this 1 line JSON array to sample.json

{"_id":"1","channel":"help","events":[{"eventType":"open","time":"2021-06-18T09:42:39.527Z"},{"eventType":"close","time":"2021-06-18T09:48:05.646Z"}]},{"_id":"2","channel":"help","events":[{"eventType":"open","time":"2021-06-18T09:42:39.535Z"},{"eventType":"edit","time":"2021-06-18T09:42:41.317Z"}]},{"_id":"3","channel":"questions","events":[{"eventType":"close","time":"2021-06-18T09:42:39.543Z"},{"eventType":"create","time":"2021-06-18T09:52:51.299Z"}]},{"_id":"4","channel":"general","events":[{"eventType":"create","time":"2021-06-18T09:42:39.552Z"},{"eventType":"edit","time":"2021-06-18T09:47:29.109Z"}]},{"_id":"5","channel":"general","events":[{"eventType":"edit","time":"2021-06-18T09:42:39.560Z"},{"eventType":"open","time":"2021-06-18T09:42:39.680Z"},{"eventType":"close","time":"2021-06-18T09:42:41.207Z"},{"eventType":"edit","time":"2021-06-18T09:42:43.372Z"},{"eventType":"edit","time":"2021-06-18T09:42:45.642Z"}]}

Check the data:

clickhousebook.local :) SELECT * FROM file('/path/to/sample.json','JSONEachRow');

SELECT *
FROM file('/path/to/sample.json', 'JSONEachRow')

Query id: 0bbfa09f-ac7f-4a1e-9227-2961b5ffc2d4

┌─_id─┬─channel───┬─events─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
1 │ help │ [{'eventType':'open','time':'2021-06-18T09:42:39.527Z'},{'eventType':'close','time':'2021-06-18T09:48:05.646Z'}]
2 │ help │ [{'eventType':'open','time':'2021-06-18T09:42:39.535Z'},{'eventType':'edit','time':'2021-06-18T09:42:41.317Z'}]
3 │ questions │ [{'eventType':'close','time':'2021-06-18T09:42:39.543Z'},{'eventType':'create','time':'2021-06-18T09:52:51.299Z'}]
4 │ general │ [{'eventType':'create','time':'2021-06-18T09:42:39.552Z'},{'eventType':'edit','time':'2021-06-18T09:47:29.109Z'}]
5 │ general │ [{'eventType':'edit','time':'2021-06-18T09:42:39.560Z'},{'eventType':'open','time':'2021-06-18T09:42:39.680Z'},{'eventType':'close','time':'2021-06-18T09:42:41.207Z'},{'eventType':'edit','time':'2021-06-18T09:42:43.372Z'},{'eventType':'edit','time':'2021-06-18T09:42:45.642Z'}]
└─────┴───────────┴────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘

5 rows in set. Elapsed: 0.001 sec.

Create a table to receive the JSON rows:

clickhousebook.local :) CREATE TABLE IF NOT EXISTS sample_json_objects_array (
`rawJSON` String EPHEMERAL,
`_id` String DEFAULT JSONExtractString(rawJSON, '_id'),
`channel` String DEFAULT JSONExtractString(rawJSON, 'channel'),
`events` Array(JSON) DEFAULT JSONExtractArrayRaw(rawJSON, 'events')
) ENGINE = MergeTree
ORDER BY
channel

CREATE TABLE IF NOT EXISTS sample_json_objects_array
(
`rawJSON` String EPHEMERAL,
`_id` String DEFAULT JSONExtractString(rawJSON, '_id'),
`channel` String DEFAULT JSONExtractString(rawJSON, 'channel'),
`events` Array(JSON) DEFAULT JSONExtractArrayRaw(rawJSON, 'events')
)
ENGINE = MergeTree
ORDER BY channel

Query id: d02696dd-3f9f-4863-be2a-b2c9a1ae922d


0 rows in set. Elapsed: 0.173 sec.

Insert the data:

clickhousebook.local :) INSERT INTO
sample_json_objects_array
SELECT
*
FROM
file(
'/opt/cases/000000/sample_json_objects_arrays.json',
'JSONEachRow'
);

INSERT INTO sample_json_objects_array SELECT *
FROM file('/opt/cases/000000/sample.json', 'JSONEachRow')

Query id: 60c4beab-3c2c-40c1-9c6f-bbbd7118dde3

Ok.

0 rows in set. Elapsed: 0.002 sec.

Check how the data inference acted on JSON object type:

clickhousebook.local :) DESCRIBE TABLE sample_json_objects_array SETTINGS describe_extend_object_types = 1;

DESCRIBE TABLE sample_json_objects_array
SETTINGS describe_extend_object_types = 1

Query id: 302c0c84-1b63-4f60-ad95-d91c0267b0d4

┌─name────┬─type────────────────────────────────────────┬─default_type─┬─default_expression─────────────────────┬─comment─┬─codec_expression─┬─ttl_expression─┐
│ rawJSON │ String │ EPHEMERAL │ defaultValueOfTypeName('String') │ │ │ │
│ _id │ String │ DEFAULT │ JSONExtractString(rawJSON, '_id') │ │ │ │
│ channel │ String │ DEFAULT │ JSONExtractString(rawJSON, 'channel') │ │ │ │
│ events │ Array(Tuple(eventType String, time String))DEFAULT │ JSONExtractArrayRaw(rawJSON, 'events') │ │ │ │
└─────────┴─────────────────────────────────────────────┴──────────────┴────────────────────────────────────────┴─────────┴──────────────────┴────────────────┘

Events is an Array of Tuple each containing a eventType String and a time String fields. This latter type is suboptimal (we'd want DateTime instead).

Let's see the data:

clickhousebook.local :) SELECT
_id,
channel,
events.eventType,
events.time
FROM sample_json_objects_array
WHERE has(events.eventType, 'close')

SELECT
_id,
channel,
events.eventType,
events.time
FROM sample_json_objects_array
WHERE has(events.eventType, 'close')

Query id: 3ddd6843-5206-4f52-971f-1699f0ba1728

┌─_id─┬─channel───┬─events.eventType──────────────────────┬─events.time──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
5 │ general │ ['edit','open','close','edit','edit']['2021-06-18T09:42:39.560Z','2021-06-18T09:42:39.680Z','2021-06-18T09:42:41.207Z','2021-06-18T09:42:43.372Z','2021-06-18T09:42:45.642Z']
1 │ help │ ['open','close']['2021-06-18T09:42:39.527Z','2021-06-18T09:48:05.646Z']
3 │ questions │ ['close','create']['2021-06-18T09:42:39.543Z','2021-06-18T09:52:51.299Z']
└─────┴───────────┴───────────────────────────────────────┴──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘

3 rows in set. Elapsed: 0.001 sec.

Let's run a few queries:

_id and channel of events that have an eventType of value close

clickhousebook.local :) SELECT
_id,
channel,
events.eventType
FROM
sample_json_objects_array
WHERE
has(events.eventType,'close')

SELECT
_id,
channel,
events.eventType
FROM sample_json_objects_array
WHERE has(events.eventType, 'close')

Query id: 033a0c56-7bfa-4261-a334-7323bdc40f87

┌─_id─┬─channel───┬─events.eventType──────────────────────┐
5 │ general │ ['edit','open','close','edit','edit']
1 │ help │ ['open','close']
3 │ questions │ ['close','create']
└─────┴───────────┴───────────────────────────────────────┘
┌─_id─┬─channel───┬─events.eventType──────────────────────┐
5 │ general │ ['edit','open','close','edit','edit']
1 │ help │ ['open','close']
3 │ questions │ ['close','create']
└─────┴───────────┴───────────────────────────────────────┘

6 rows in set. Elapsed: 0.001 sec.

We want to query the time , for example all events between a given time range, but we notice it was imported as String:

clickhousebook.local :) SELECT toTypeName(events.time) FROM sample_json_objects_array;

SELECT toTypeName(events.time)
FROM sample_json_objects_array

Query id: 27f07f02-66cd-420d-8623-eeed7d501014

┌─toTypeName(events.time)─┐
│ Array(String)
│ Array(String)
│ Array(String)
│ Array(String)
│ Array(String)
└─────────────────────────┘

5 rows in set. Elapsed: 0.001 sec.

So, in order to handle these as dates, first we want to convert to DateTime. To convert an array we use a map function:

clickhousebook.local :) 
SELECT
_id,
channel,
arrayMap(x->parseDateTimeBestEffort(x), events.time)
FROM
sample_json_objects_array

SELECT
_id,
channel,
arrayMap(x -> parseDateTimeBestEffort(x), events.time)
FROM sample_json_objects_array

Query id: f3c7881e-b41c-4872-9c67-5c25966599a1

┌─_id─┬─channel───┬─arrayMap(lambda(tuple(x), parseDateTimeBestEffort(x)), events.time)─────────────────────────────────────────────┐
4 │ general │ ['2021-06-18 11:42:39','2021-06-18 11:47:29']
5 │ general │ ['2021-06-18 11:42:39','2021-06-18 11:42:39','2021-06-18 11:42:41','2021-06-18 11:42:43','2021-06-18 11:42:45']
1 │ help │ ['2021-06-18 11:42:39','2021-06-18 11:48:05']
2 │ help │ ['2021-06-18 11:42:39','2021-06-18 11:42:41']
3 │ questions │ ['2021-06-18 11:42:39','2021-06-18 11:52:51']
└─────┴───────────┴─────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘

5 rows in set. Elapsed: 0.001 sec.

we can appreciate the diffs using toTypeName on both the arrays:

clickhousebook.local :) SELECT
_id,
channel,
toTypeName(events.time) as events_as_strings,
toTypeName(arrayMap(x->parseDateTimeBestEffort(x), events.time)) as events_as_datetime
FROM
sample_json_objects_array

SELECT
_id,
channel,
toTypeName(events.time) AS events_as_strings,
toTypeName(arrayMap(x -> parseDateTimeBestEffort(x), events.time)) AS events_as_datetime
FROM sample_json_objects_array

Query id: 1af54994-b756-472f-88d7-8b5cdca0e54e

┌─_id─┬─channel───┬─events_as_strings─┬─events_as_datetime─┐
4 │ general │ Array(String) │ Array(DateTime)
5 │ general │ Array(String) │ Array(DateTime)
1 │ help │ Array(String) │ Array(DateTime)
2 │ help │ Array(String) │ Array(DateTime)
3 │ questions │ Array(String) │ Array(DateTime)
└─────┴───────────┴───────────────────┴────────────────────┘

5 rows in set. Elapsed: 0.001 sec.

now let's get the id of of the rows where time is between a given interval.

we use arrayCount to see if there is a count greater than than 0 of items in the array returned by the map function that will match the condition x BETWEEN toDateTime('2021-06-18 11:46:00', 'Europe/Rome') AND toDateTime('2021-06-18 11:50:00', 'Europe/Rome')

clickhousebook.local :) SELECT
_id,
arrayMap(x -> parseDateTimeBestEffort(x), events.time)
FROM
sample_json_objects_array
WHERE
arrayCount(
x -> x BETWEEN toDateTime('2021-06-18 11:46:00', 'Europe/Rome')
AND toDateTime('2021-06-18 11:50:00', 'Europe/Rome'),
arrayMap(x -> parseDateTimeBestEffort(x), events.time)
) > 0;

SELECT
_id,
arrayMap(x -> parseDateTimeBestEffort(x), events.time)
FROM sample_json_objects_array
WHERE arrayCount(x -> ((x >= toDateTime('2021-06-18 11:46:00', 'Europe/Rome')) AND (x <= toDateTime('2021-06-18 11:50:00', 'Europe/Rome'))), arrayMap(x -> parseDateTimeBestEffort(x), events.time)) > 0

Query id: d4882fc3-9f99-4e87-9f89-47683f10656d

┌─_id─┬─arrayMap(lambda(tuple(x), parseDateTimeBestEffort(x)), events.time)─┐
4['2021-06-18 11:42:39','2021-06-18 11:47:29']
1['2021-06-18 11:42:39','2021-06-18 11:48:05']
└─────┴─────────────────────────────────────────────────────────────────────┘

2 rows in set. Elapsed: 0.002 sec.

⚠️

Please remember, at the time of writing this article the current implementation of JSON is experimental and not suited for production.

This example highlights how to quickly import JSON and start querying it and represents a tradeoff between the ease of use where we import the JSON objects as JSON type with no need to specify upfront the schema type. Convenient for a quick test however for long term use of the data we would like to, with regards to this example to store the data using the most appropriate types, so for the time field, use DateTime instead of String, in order to avoid any post-ingestion phase conversion as illustrated above. Please refer to the documentation for more about handling JSON.