GraphiteMergeTree
This engine is designed for thinning and aggregating/averaging (rollup) Graphite data. It may be helpful to developers who want to use ClickHouse as a data store for Graphite.
You can use any ClickHouse table engine to store the Graphite data if you do not need rollup, but if you need a rollup use GraphiteMergeTree
. The engine reduces the volume of storage and increases the efficiency of queries from Graphite.
The engine inherits properties from MergeTree.
Creating a Table
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
Path String,
Time DateTime,
Value Float64,
Version <Numeric_type>
...
) ENGINE = GraphiteMergeTree(config_section)
[PARTITION BY expr]
[ORDER BY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]
See a detailed description of the CREATE TABLE query.
A table for the Graphite data should have the following columns for the following data:
-
Metric name (Graphite sensor). Data type:
String
. -
Time of measuring the metric. Data type:
DateTime
. -
Value of the metric. Data type:
Float64
. -
Version of the metric. Data type: any numeric (ClickHouse saves the rows with the highest version or the last written if versions are the same. Other rows are deleted during the merge of data parts).
The names of these columns should be set in the rollup configuration.
GraphiteMergeTree parameters
config_section
— Name of the section in the configuration file, where are the rules of rollup set.
Query clauses
When creating a GraphiteMergeTree
table, the same clauses are required, as when creating a MergeTree
table.
Deprecated Method for Creating a Table
Do not use this method in new projects and, if possible, switch old projects to the method described above.
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
EventDate Date,
Path String,
Time DateTime,
Value Float64,
Version <Numeric_type>
...
) ENGINE [=] GraphiteMergeTree(date-column [, sampling_expression], (primary, key), index_granularity, config_section)
All of the parameters excepting config_section
have the same meaning as in MergeTree
.
config_section
— Name of the section in the configuration file, where are the rules of rollup set.
Rollup Configuration
The settings for rollup are defined by the graphite_rollup parameter in the server configuration. The name of the parameter could be any. You can create several configurations and use them for different tables.
Rollup configuration structure:
required-columns patterns
Required Columns
path_column_name
path_column_name
— The name of the column storing the metric name (Graphite sensor). Default value: Path
.
time_column_name
time_column_name
— The name of the column storing the time of measuring the metric. Default value: Time
.
value_column_name
value_column_name
— The name of the column storing the value of the metric at the time set in time_column_name
. Default value: Value
.
version_column_name
version_column_name
— The name of the column storing the version of the metric. Default value: Timestamp
.
Patterns
Structure of the patterns
section:
pattern
rule_type
regexp
function
pattern
rule_type
regexp
age + precision
...
pattern
rule_type
regexp
function
age + precision
...
pattern
...
default
function
age + precision
...
Patterns must be strictly ordered:
- Patterns without
function
orretention
. - Patterns with both
function
andretention
. - Pattern
default
.
When processing a row, ClickHouse checks the rules in the pattern
sections. Each of pattern
(including default
) sections can contain function
parameter for aggregation, retention
parameters or both. If the metric name matches the regexp
, the rules from the pattern
section (or sections) are applied; otherwise, the rules from the default
section are used.
Fields for pattern
and default
sections:
rule_type
- a rule's type. It's applied only to a particular metrics. The engine use it to separate plain and tagged metrics. Optional parameter. Default value:all
. It's unnecessary when performance is not critical, or only one metrics type is used, e.g. plain metrics. By default only one type of rules set is created. Otherwise, if any of special types is defined, two different sets are created. One for plain metrics (root.branch.leaf) and one for tagged metrics (root.branch.leaf;tag1=value1). The default rules are ended up in both sets. Valid values:all
(default) - a universal rule, used whenrule_type
is omitted.plain
- a rule for plain metrics. The fieldregexp
is processed as regular expression.tagged
- a rule for tagged metrics (metrics are stored in DB in the format ofsomeName?tag1=value1&tag2=value2&tag3=value3
). Regular expression must be sorted by tags' names, first tag must be__name__
if exists. The fieldregexp
is processed as regular expression.tag_list
- a rule for tagged metrics, a simple DSL for easier metric description in graphite formatsomeName;tag1=value1;tag2=value2
,someName
, ortag1=value1;tag2=value2
. The fieldregexp
is translated into atagged
rule. The sorting by tags' names is unnecessary, ti will be done automatically. A tag's value (but not a name) can be set as a regular expression, e.g.env=(dev|staging)
.
regexp
– A pattern for the metric name (a regular or DSL).age
– The minimum age of the data in seconds.precision
– How precisely to define the age of the data in seconds. Should be a divisor for 86400 (seconds in a day).function
– The name of the aggregating function to apply to data whose age falls within the range[age, age + precision]
. Accepted functions: min / max / any / avg. The average is calculated imprecisely, like the average of the averages.
Configuration Example without rules types
<graphite_rollup>
<version_column_name>Version</version_column_name>
<pattern>
<regexp>click_cost</regexp>
<function>any</function>
<retention>
<age>0</age>
<precision>5</precision>
</retention>
<retention>
<age>86400</age>
<precision>60</precision>
</retention>
</pattern>
<default>
<function>max</function>
<retention>
<age>0</age>
<precision>60</precision>
</retention>
<retention>
<age>3600</age>
<precision>300</precision>
</retention>
<retention>
<age>86400</age>
<precision>3600</precision>
</retention>
</default>
</graphite_rollup>
Configuration Example with rules types
<graphite_rollup>
<version_column_name>Version</version_column_name>
<pattern>
<rule_type>plain</rule_type>
<regexp>click_cost</regexp>
<function>any</function>
<retention>
<age>0</age>
<precision>5</precision>
</retention>
<retention>
<age>86400</age>
<precision>60</precision>
</retention>
</pattern>
<pattern>
<rule_type>tagged</rule_type>
<regexp>^((.*)|.)min\?</regexp>
<function>min</function>
<retention>
<age>0</age>
<precision>5</precision>
</retention>
<retention>
<age>86400</age>
<precision>60</precision>
</retention>
</pattern>
<pattern>
<rule_type>tagged</rule_type>
<regexp><![CDATA[^someName\?(.*&)*tag1=value1(&|$)]]></regexp>
<function>min</function>
<retention>
<age>0</age>
<precision>5</precision>
</retention>
<retention>
<age>86400</age>
<precision>60</precision>
</retention>
</pattern>
<pattern>
<rule_type>tag_list</rule_type>
<regexp>someName;tag2=value2</regexp>
<retention>
<age>0</age>
<precision>5</precision>
</retention>
<retention>
<age>86400</age>
<precision>60</precision>
</retention>
</pattern>
<default>
<function>max</function>
<retention>
<age>0</age>
<precision>60</precision>
</retention>
<retention>
<age>3600</age>
<precision>300</precision>
</retention>
<retention>
<age>86400</age>
<precision>3600</precision>
</retention>
</default>
</graphite_rollup>
Data rollup is performed during merges. Usually, for old partitions, merges are not started, so for rollup it is necessary to trigger an unscheduled merge using optimize. Or use additional tools, for example graphite-ch-optimizer.